Erythritol is a pentose-phosphate pathway metabolite and associated with adiposity gain in young adults.
نویسندگان
چکیده
Metabolomic markers associated with incident central adiposity gain were investigated in young adults. In a 9-mo prospective study of university freshmen (n = 264). Blood samples and anthropometry measurements were collected in the first 3 d on campus and at the end of the year. Plasma from individuals was pooled by phenotype [incident central adiposity, stable adiposity, baseline hemoglobin A1c (HbA1c) > 5.05%, HbA1c < 4.92%] and assayed using GC-MS, chromatograms were analyzed using MetaboliteDetector software, and normalized metabolite levels were compared using Welch's t test. Assays were repeated using freshly prepared pools, and statistically significant metabolites were quantified in a targeted GC-MS approach. Isotope tracer studies were performed to determine if the potential marker was an endogenous human metabolite in men and in whole blood. Participants with incident central adiposity gain had statistically significantly higher blood erythritol [P < 0.001, false discovery rate (FDR) = 0.0435], and the targeted assay revealed 15-fold [95% confidence interval (CI): 13.27, 16.25] higher blood erythritol compared with participants with stable adiposity. Participants with baseline HbA1c > 5.05% had 21-fold (95% CI: 19.84, 21.41) higher blood erythritol compared with participants with lower HbA1c (P < 0.001, FDR = 0.00016). Erythritol was shown to be synthesized endogenously from glucose via the pentose-phosphate pathway (PPP) in stable isotope-assisted ex vivo blood incubation experiments and through in vivo conversion of erythritol to erythronate in stable isotope-assisted dried blood spot experiments. Therefore, endogenous production of erythritol from glucose may contribute to the association between erythritol and obesity observed in young adults.
منابع مشابه
Plasma Metabonomic Profiling of Diabetic Retinopathy.
Diabetic retinopathy (DR) is the most common microvascular complication of diabetes and the leading cause of visual impairment in working-age adults. Patients with diabetes often develop DR despite appropriate control of systemic risk factors, suggesting the involvement of other pathogenic factors. We hypothesize that the plasma metabolic signature of DR is distinct and resolvable from that of ...
متن کاملFunctional overexpression of genes involved in erythritol synthesis in the yeast Yarrowia lipolytica
BACKGROUND Erythritol, a four-carbon polyol synthesized by microorganisms as an osmoprotectant, is a natural sweetener produced on an industrial scale for decades. Despite the fact that the yeast Yarrowia lipolytica has been reported since the 1970s as an erythritol producer, the metabolic pathway of this polyol has never been characterized. It was shown that erythritol synthesis in yeast occur...
متن کاملErythritol feeds the pentose phosphate pathway via three new isomerases leading to D-erythrose-4-phosphate in Brucella.
Erythritol is an important nutrient for several α-2 Proteobacteria, including N2-fixing plant endosymbionts and Brucella, a worldwide pathogen that finds this four-carbon polyol in genital tissues. Erythritol metabolism involves phosphorylation to L-erythritol-4-phosphate by the kinase EryA and oxidation of the latter to L-3-tetrulose 4-phosphate by the dehydrogenase EryB. It is accepted that f...
متن کاملIsoprenoid biosynthesis in Synechocystis sp. strain PCC6803 is stimulated by compounds of the pentose phosphate cycle but not by pyruvate or deoxyxylulose-5-phosphate.
The photosynthetic cyanobacterium Synechocystis sp. strain PCC6803 possesses homologs of known genes of the non-mevalonate 2-C-methyl-D-erythritol 2-phosphate (MEP) pathway for synthesis of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Isoprenoid biosynthesis in extracts of this cyanobacterium, measured by incorporation of radiolabeled IPP, was not stimulated by pyruvate,...
متن کاملCombination of Entner-Doudoroff Pathway with MEP Increases Isoprene Production in Engineered Escherichia coli
Embden-Meyerhof pathway (EMP) in tandem with 2-C-methyl-D-erythritol 4-phosphate pathway (MEP) is commonly used for isoprenoid biosynthesis in E. coli. However, this combination has limitations as EMP generates an imbalanced distribution of pyruvate and glyceraldehyde-3-phosphate (G3P). Herein, four glycolytic pathways-EMP, Entner-Doudoroff Pathway (EDP), Pentose Phosphate Pathway (PPP) and Dah...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 114 21 شماره
صفحات -
تاریخ انتشار 2017